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PROJECT SPONSORS

Arco Exploration and Production Technology
California State Lands Commission
Exxon Production Research Company
Mobil Research and Development Company
Shell Oil Company
Unocal Corporation
&

U. S. Minerals Management Service
sponsoring associated projects:

"Verification of Screening Procedures”
&

"Dynamic Nonlinear Response In Severe Sea States"
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COMPLEX SIMPLIFIED
LINEAR & NONLINEAR ULTIMATE LIMIT STATE
ANALYTICAL MODELS - ANALYTICAL

MODELS
Field & Lab

Data & Experience

STATIC - STATIC
STRUCAD & USFOS ULSLEA
RSRs, |, o RSRs
- Ken Loch - Mehrdad Mortazavi
- Peter Young

frame tests, caisson tests

atform & caisson performanc
in Hilda,Camille, Andrew and

DYNAMIC - DYNAMIC
USFOS, FACTS LDOF
RSRd, 1, <> Fv
- Peter Young - Charles Bowen
- Charles Bowen - Peter Young
- Screening

« Parametric studies
* Reliability analyses
» Preliminary design
- Checking complex models
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Screening Methodologies for Use in
Platform Assessments and
Requalifications

PROJECT OBJECTIVE

Further develop and verify qualitative and
simplified quantitative screening methodologies
for platform assessments so they can be used

in practice

. and develop a reliable and easy to use tool to check
the results of level 3 and 4 platform analyses!!

Level 1 - 'Scoring Factors'

Level 2 - ‘Limit Equilibrium'
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PROJECT SCOPE REVIEW

LEVEL 1
(If time available)

Qualitative ranking factors and detailed assessment
guidelines

Verification / demonstration of applications

LEVEL 2

Automated input for 4, 6, 8, and 12 leg geometries

Storm loading algorithms (shallow water, 20 th
Edition procedures, loading effects)

Element capacity modifications (joints, local wave

forces, deck leg P-A, leg capacity, pile axial failure
mode, biases) |

Damaged elements (holes, dents, cracks), and
repaired elements (grouted)

Reliability analysis

Verification / demonstration of applications
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PROJECT SCHEDULE REVIEW

2 years

May 1993 - April 1994
LEVEL 2 - 6, 8, 12 leg geometry (Completed)

LEVEL 2 - Element capacity modifications

(Completed)
LEVEL 2 - Verification cases (Completed)

LEVEL 2 - Loading modifications (Started)

May 1994 - April 1995

LEVEL 1 - Ranking factors & assessment guidelines
(If time available)

LEVEL 2 - Damaged & repaired elements (Started)

LEVEL 1 & 2 Verification cases & documentation

(Started
LEVEL 2 - Reliability analysis (Started)

Project final report & software documentation
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DELIVERABLES J

#1 - (Level 1 and) Level 2 PC code (source, IBM 486)

theory, user, and applications manuals

#2 - Engineering reports

background, approaches, analytical procedures,
verifications

#3 - Project meetings (every 6 months)

meeting notes - project progress
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PLATFORM REASSESSMENT & REQUALIFICATION
PROCESS

Perform Condition Propose Inspection,

Survey According to
Assessment & API| Guidelines Maintenance &  lq¢—

Select Platform For

i ir (IMR
Requalification and Evaluate Results R;':ggrgm )
ASSESS RSR L J
LEVEL 1 ~ LEVEL2 LEVEL 3 LEVEL 4
Limit Equilibrium Modified Elastic Nonlinear

Scoring Factors

Y

Implement IMR Program Evaluate I >
& Record Results Fitness For Purpose .
No, Revise IMR

Yes
* No,
Decommission

Ru
RSR = Sr

Ru=RusF v
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RSR

LEVEL 2
'SIMPLIFIED ANALYSES'

USER INPUT

—{ ENVIRONMENTAL

v

STRUCTURAL I
— FOUNDATION ‘—'I

— WIND
STORM LOADING
SHEAR PROFILES WAVE
- CURRENT
* — DECK
PLATFORM SHEAR
RESISTANCE JACKET
PROFILES
‘ - PILES
PLATFORM STATIC
LATERAL LOAD
CAPACITIES DYNAMIC

¥

FRAGILITY CURVES
Pf|H

LOAD UNCERTAINTIESI

CAPACITY uncenmmmi
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PROJECT PROGRESS & STATUS

A Review of Past Developments

Improved Axial Compression Capacity Formulation

Bending Moment Resistance of Jacket Legs

Damged and Repaired Members

Simplified Probabilistic Failure Analysis

11
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STORM LOADINGS
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PLATFORM CAPACITIES

DECK LEGS

JACKET

FOUNDAT|®N
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OUTPUT
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IMPROVED AXIAL CAPACITY FORMULATION
ORIGINALLY PROPOSED APPROACH

M/Mp
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1.0

1.0 P/P
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IMPROVED AXIAL CAPACITY FORMULATION

USFOS APPROACH
' i
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IMPROVED AXIAL CAPACITY FORMULATION
IMPROVED SIMPLIFIED APPROACH

P A,
Mxr EIM - w 8P lZ
l El

M§g+82M = _wlz_SPAo

M(E)= “"‘“‘("g)M@=o)+f"—“5M(¢=ﬂ*é[wsewi_é)_’](wl’wm..)

Sine Sine COSE
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IMPROVED AXIAL CAPACITY FORMULATION
IMPROVED SIMPLIFIED APPROACH

M/Mp 4

/’u

1.0

1.0 P/P

EQUILIBRIUM AT COLLAPSE

ME=0.5)=-M(=0)=-ME=1)= M,

’ 1 1 1
Mu= sin0.5¢ 7 8_1 (w12+8PUA0)
1+ 22— |E cos —
sin ¢ 2
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IMPROVED AXIAL CAPACITY FORMULATION
CALIBRATION TO API BUCKLING CURVE

; 2
1+2sm‘0.5£ e Lcosf—
sin € 2
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IMPROVED AXIAL CAPACITY FORMULATION
VERIFICATION CASES

434 n

408 n

+180
- +120 o

M n

— -t n

(mtire}

END-ON
METHGD K Delta0/L M Pu Pu/Pusfos
% KIPS-FT KIPS
USFOS - 0.16 137.66 607.50 1.00
ULSLEA - 0.16 145.01 664.90 1.09
ULSLEA 0.65 0.32 165.67 600.81 0.99
(API)
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IMPROVED AXIAL CAPACITY FORMULATION
VERIFICATION CASES

+584 I

+308 N
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1D n
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IMPROVED AXIAL CAPACITY FORMULATION
VERIFICATION CASES

+384 in

_ o

=270 i

—_—

T e

BROADSIDE
METHOD K DeltaQ/L M Pu Pu/Pusfos
% KIPS.FT KIPS
USFOS - 0.13 140.08 611.00 1.00
ULSLEA - 0.13 154.52 645,99 1.06
ULSLEA 0.65 0.31 179.16 570.32 0.93
(API)
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IMPROVED AXIAL CAPACITY FORMULATION
VERIFICATION CASES

BROADSIDE
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IMPROVED JACKET CAPACITY FORMULATION
ORIGINAL APPROACH

VIRTUAL WORK

W () _ W ad

2(M1+Mx
Py=Po+—g- :

ORIGINAL APPROACH

M,=M=0

PU=PBH|
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IMPROVED JACKET CAPACITY FORMULATION
IMPROVED APPROACH

UPPER MOST
JACKET BAY

TYPICAL
JACKET BAY

LOWEST
JACKET BAY

MOMENT DISTRIBUTION
IN AJACKET LEG

P,hy, P,h,
2EI C. <M

M}zMa-PDhDSMP|

FOR EQUAL SPANS. CONSTANT MOMENT OF INERTIA AND
LIMITING CASE OF RIGID SUPPORTS:

M < 0.286M ||
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DAMAGED AND REPAIRED MEMBERS

OBJECTIVE:

TO DEVELOP SIMPLIFIED METHODS TO EVALUATE THE
EFFECTS OF MEMBER DAMAGE AND REPAIR ON PLATFORM

RESPONSE TO EXTREME LOADINGS

DAMAGE CLASSIFICATION:

DENTS

GLOBAL BENDING

CORROSION

FATIGUE CRACKED JOINTS
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DAMAGED AND REPAIRED MEMBERS
DENTS AND GLOBAL BENDING

Analytical methods

¢ Beam-column Analysis (Ellinas 1984, Chen 1987, Ricles et al. 1992,
Loh 1993)

« Numerical Integration Methods (Kim 1992, Duan 1993)

¢ Non-linear Finite Element Method (FEM)
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DAMAGED AND REPAIRED MEMBERS
Ellinas’ Approach

s

4ih
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e ]
s I
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DAMAGED AND REPAIRED MEMBERS
Loh’s Unity Check Equations

Dent-Section Capacities and Properties

P._A._,.[_ dd , M._1I._,.,(_ dd
p- A‘-e p( 0.08 t)zo.::s Mo p( 0.06 ; )20.55
Strength Check
_ [+ * 2
P.. M ,q M,
UC—P+(M+)+[M*} < 1.0
P.. M, M,
Stability Check
( ' \
P M- M *
UC:P + P + P < 1.0
W) (e
\ PEa J \ P y,
( o ( \’
P M + M*
UC=P + p + P < L6
(=R (T
\ Ed J \ E J
£crd + I;)crdAY _1.0
crd 0 1_ crdJMu
( PEd ’
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DAMAGED AND REPAIRED MEMBERS

Sensitivity Analysis of Ellinas’ vs Loh’s Formulation
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DAMAGED AND REPAIRED MEMBERS

A Comparison Between Experimental and Predicted Capacities

L |
T 1 P
18 l—[ecc
— dd
TEST D t { Sy E dd/D delta/l e/l
(IN) {IN} {IN) (XS0 (XSh (%) %) {%)
Al 2.50 0.08 84.63 33.06 29145 0.02
A2 2.50 0.08 84.63 3321 30160 0.03 0.46
Al 2.50 0.08 84.63 32.77 28710 0.046 0.55
83 3.13 0.07 84.63 28.71 31030 0.08 0.5
C1 4.00 0.07 84.63 30.60 29145 0.05
C2 400 0.07 84.63 41.18 29870 0.05 0.46
Cl 400 0.07 84.63 3379 28565 0.034 0.04
Fl 16.02 0.39 305.24 44.23 28710 007
F2 1508 0.3¢ 305,24 42.49 31030 0.124 (.18
Test dd/D delta/L e/l Plest BCDENT LOH ELLINAS | RICLES
(%) (%) (KN) (KN) (KN) (KN) {XN)
Al Q.02 78.10 76.50 63.46 60.94 -
A2 0.03 Q.46 . 4600 41.60 38.86 41.88
Al 0.05 0.55 44,20 43.80 33.68 28.23 -
B3 0.08 0.50 43.30 41.50 I5.97 2504 4196
1 0.05 121.00 104,80 95.37 96.48 119.66
C2 0.05 0.46 £9.40 97.10 90.66 97.84 _
C 0.03 0.04 95,70 101.90 23.61 63.85 86.00
F1 0.07 3238.70 | 350990 | 3160.30 | 3192.10 | 3862.30
F2 0.12 018 2056.90 { 2031.70 | 1982.40 | 1068.00 | 2051.40
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DAMAGED AND REPAIRED MEMBERS

A Comparison Between Experimental and Predicted Capacities

Pu / Ptest

1.20

1.00

0.80

0.60

0.40

X, x
3 n X BCDENT
X ® % v w & x
X . = LOH
= X
. .
. . " 4 ELLINAS
4 * RICLES
A
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DAMAGED AND REPAIRED MEMBERS

Sensitivity Analyses and Conclusions

The residual strength decreases significantly as the dent depth
increases.

Column strength is more sensitive to local denting damage when
slenderness parameter A is small.

For a given dent depth, the analyses show a decrease in residual
strength for members with higher D/t ratio.

There is negligible conservatism in assuming a mid-length dent
location for any practical dent within the middle-half section of a
members effective length.

Lateral loadings, such as those caused by wave forces, can
significantly affect dented brace capacity.

Ricles (1993): DENTA ( developed by Taby 1988), Loh’s interaction
equation, numerical integration based on M-P-® relationships, and
the non-linear FEM are able to predict the residual capacity of the
test members reasonably well.
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PROBABILISTIC FAILURE ANALYSIS

Objective and Background

Objective:

To develop a reliability based level 2 screening procedure to identify
critical platforms and their potential failure modes

Backaround:

In(—l-g—!-)
S|H
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e
o
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o
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PROBABILITY OF FAILURE
CONDITIONAL ON H - Pf
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ek
o
&

10 12 14 16 18 20 22 24
EXPECTED MAXIMUM WAVE HEIGHT - H - meters
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PROBABILISTIC FAILURE ANALYSIS
FOSM Based Component and System Reliability

M=InhR-InS

_ (M"IJ“M)
U=-35."
P,=CDF(U)

assuming lognormal distribution for loads and capacities the exact
reliability index can be given as:

Y,
G

i B 1V
I‘LMHI"(HSJ;J
G;:In(I+Vi)+m(I+V;)_2m(I+pRsV"VS)
szq)(_ﬁ)

maxPﬁ<Pﬁ<ZPﬁ

B=
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PROBABILISTIC FAILURE ANALYSIS

Uncertainty in Loading

WAVE LOADING:

SH=Kg HX

Drag force dominated structure:

SH=Kq Ky H2
Professor Bea:
x Sinx BIAS (By) OinBx
Ky 0.1 0.41 0.47
K4 0.1 1.67 0.23
Hmax (G.O.M) 0.3 1.1 0.13
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PROBABILISTIC FAILURE ANALYSIS

Uncertainty in Component Capacities

Deck Capacity:

UrD = Mpger cos[(rQ 1 2n Mpopp)](2n - QL21 6E6NIL

OrD = [ 0'2Mcr(8RD/ 8M(,‘r)z + 02 Pcri(ORD/! 8Pcrl)z + 20McrOPcrl
(BRD/SMcr)(ORDIBPr1)] 12

where

SRD/OMcr = cos[(rRQ | 2n Wprp)](2n - QL2/ 6EI)IL

ORD/BPcrl = (MOMpgcer 1 20 (Rpey)2) sinf(mQ [ 2n Mpopp)]
(2n - QL2/ 6EI)/L

VMcer= 0.106, Vrcri=0.117

e VMcr, VPert are reported to be constant over the entire range of practical
values of Et/fyD and D/t respectively.
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PROBABILISTIC FAILURE ANALYSIS

Uncertainty in Component Capacities

Jacket Bay Capacity:

HRji = X 0GR + MRr
ORrJi = [ > (aiGRf)z + X (IfClj GRiGRj +(BFLGRL )2]1/2
Ri = f(A)

A = (1/m) (Fv1E)0S (KLir)

VR,' 0.099 0.100 0.106 0.119 0.150 0.212
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PROBABILISTIC FAILURE ANALYSIS

Uncertainty in Component Capacities

Foundation Capacity:

Axial capacity:

Wrra = g Ap + HeAg

Axial Pile Capacity in Bias C.0.V.
Sand 0.9 0.47 - 0.56
Clay 1.3-3.7 0.32 - 0.53

l.ateral capacity in clay:

Hrpr = 1/2[-27 D2 Wy, + (27 D2 U5, )2 + 144 g, D
(Mpy - O/nA) ZJO-5 + URL

Lateral capacity in sand:

Hrpr = 2.382 ((Wy - QlAp) Z)213 (My D tan2(45+M0/2))1/3 + URL

Lateral Capacity in Bias C.0.V.
Clay 0.92 0.20
Sand 0.81 0.21
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PROBABILISTIC FAILURE ANALYSIS

Example Application
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PROBABILISTIC FAILURE ANALYSIS

Summary and Conclusions

* A simplified procedure is presented to perform structural reliability
analysis of conventional, steel jacket, offshore platforms, which can
be used in the process of reassessment and requalification of older
platforms.

» The analysis is based on a first order second moment approach.

» It is assumed that the loads and capacities are lognormally
distributed.

» The results from the simplified FOSM analysis are in good
agreement with those gained from more sophisticated first order
and second order reliability methods (FORM and SORM).
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PROBABILISTIC FAILURE ANALYSIS
Future Work

« Considering correlations between load and resistance

* Including the uncertainty associated with joint capacities

e Integrating the reliability analysis procedure in “ULSLEA”
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Verification of Screening
Methodologies for Use in
Gulf of Mexico Platform
Requalifications

Kenneth J. Loch
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Project Objectives

¢ To further develop and verify the
viability of Level 2 screening methods

¢ To utilize hurricane Andrew platform
survival and failure experiences to help
verify Level 4 non-linear analyses
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Project Scope
Jan. 94 - Dec. 94

¢ Amoco ST 161A
¢ PMB Benchmark
¢ Chevron ST 151H
¢ Chevron ST 151K
¢ Report
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Verification Case Study
Status

¢ Amoco ST 161A - completed

¢ PMB Benchmark - completed

¢ Kerr McGee ST 34-2,3 - completed
¢ Kerr McGee ST 34-4 - completed
¢ Chevron ST 151H - data available
¢ Chevron 151K - data available

¢ Shell SP 62 - data available

¢ Shell SS 274 - data available

¢ Phillips SMI 76B - data available
¢ Phillips NCI - A - data available

¢ others (Mobil, Unocal, Exxon)
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General Description

¢ Eight leg drilling and production
platform

¢ Designed by McDermott using 25-year
Glenn storm (H=55 ft.)

¢ Installed in 118 ft of water in 1964

¢ Broadside and end-on framing
battered at 1:8

¢ Cellar and main decks at +34 ft and
+47 ft respectively

Amoco ST 161A 48
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Platform Details

¢ No joint cans (0.5 in. jacket leg
thickness)

¢ Gusset plates used for leg K-joints
¢ F, =43 ksi or 58 ksi

¢ 36 in. piles penetrate 165 ft of soft to
stiff clay and 25 ft of dense sand

¢ Vertical braces range in size from 14
in. in the fourth (upper) bay to 20 in.
in the first bay

Amoco ST 161A 49
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Platform History

¢ 1972: First risk analysis performed

¢ 1973: Pile-leg annulus grouted as a
result of assessment

¢ 1974: Hurricane Carmen

* eye passed within 10 miles of
platform

* hindcast 58 ft wave, SE, no damage
¢ 1988: Risk analysis, all eight conductors
removed, bottom deck cleared
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Platform History Continued

¢ 1992: Hurricane Andrew
* eye passed within 8 miles of platform
 60-64 ft waves, ESE
* yielding in +10 ft K-joints, no grout
¢ 1992: Risk analysis and retrofits
* 10% more load would cause collapse

* conductor removal reduces loads by
20%
* +10 ft K-joints grouted
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Level 4 Analysis

¢ Static pushover analysis
¢ Utilized Amoco’s 1992 USFOS model
¢ WAJAC generated hydrodynamic loads

¢ Broadside and end-on analyzed
separately to match Level 2 approach
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USFOS Model

¢ Only major structural members modeled

¢ Grouted pile/leg member used leg
diameter (39 in.) and double the leg
thickness (1.0 in.)

¢ Initial imperfection based on Chen’s
buckling curve for critical braces

¢ PMB PAR program developed non-linear
springs, but T-Z and Q-Z modeled as
equivalent linear springs

¢ Rigid joints assumed due to grout
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Orientation
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Isometric
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Broadside Elevation
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End-on Elevation
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Loading Information

¢ Assumed marine growth = 1.5 in.
¢ Cd=1.2
¢Cm=1.2
¢ wkf=0.88
¢ Broadside loading
e H=641ft, T=13.3 sec.

* In-line current = 31 in/sec, chf =
0.80

¢ End-on loading
e H=72ft, T=14.6 sec

* In-line current = 2.6 in/sec, cbf = |
0.70
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Loading Profiles

ST 161 A Broadside Shear Profile

Elevation - in
o

Shear - kips

ST 161A End-On Shear Profile
1000 —————r——

Elevation - in

Shear - kips
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Broadside Force-

Displacement History
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Broadside Failure
Progression
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Broadside Critical Brace
Axial Force History
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Broadside Critical Brace
P-M Interaction
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End-on Force-Displacement
History
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End-on Failure Progression
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End-on Critical Brace Axial
Force History
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End-on Critical Brace P-M
Interaction
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Comparison with Actual
Platform Performance

¢ ST 161A survived 60-64 ft waves 15° off
broadside during Andrew

¢ USFOS model predicts first member
failure at 91% of load from 64 ft broadside

wave

¢ Deck loads are very significant and hence
loading is very sensitive to wave height
and surge

¢ Imperfection and member orientation
combination is realistic but conservative

¢ Conclusion: USFOS model would
predict survival during likely Andrew

loading
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VERIFICATION CASE STUDIES
Level 2 Results (AMOCO’S ST161A)

BROADSIDE LOADING

H=64ft; T=13.3sec; Uc =256 ft/sec

Level 4 (SESAM) Level 2 (ULSLEA)
Base shear (kips) 4,252 4,428
Jacket Load (kips) 2,510 2,686

PLATFORM ELEVATION (FT)

BROADSIDE LOADING
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STORM SHEAR / PLATFORM SHEAR CAPACITY
(KIPS)
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PLATFORM ELEVATION (FT)

MARINE TECHNOLOGY DEVELOPMENT GROUP - UNIVERSITY OF CALIFORNIA AT BERKELEY

VERIFICATION CASE STUDIES
Level 2 Results (AMOCO’S ST161A)

BROADSIDE LOADING

Level 4 (USFOS) Level 2 (ULSLEA)

Base shear at collapse
(kips) 3,861 3,670

BROADSIDE LOADING
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VERIFICATION CASE STUDIES
Level 2 Results (AMOCO’S ST161A)

END-ON LOADING

H=72ft; T=14.6 sec; Uc =0 ft/sec

Level 4 (SESAM) Level 2 (ULSLEA)
Base shear (kips) 3,487 3,814
Jacket Load (kips) 2,252 2,579

END-ON LOADING
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STORM SHEAR / PLATFORM SHEAR CAPACITY
(KIPS)
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VERIFICATION CASE STUDIES
Level 2 Results (AMOCO’S ST161A)

END-ON LOADING

Level 4 (USFOS) Level 2 (ULSLEA)

Base shear at coliapse
(kips) 3,905 3,128

END-ON LOADING
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PMB Benchmark Platform
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General Description

¢ Four leg platform in Ship Shoal area
¢ Installed in 157 ft of water in 1970

¢ Broadside and end-on framing battered
at 1:11

¢ Decks located at +33 ft, +43 ft, +56 ft
and +71.5 ft

¢ Three 30 in. and one 48 in. conductors
are located in northern half of platform

¢ Boatlandings on east and south sides
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Platform Details

¢ Jacket is identical for both primary
orthogonal directions

¢ Legs thickened at joint, 1.25 in. vs. 0.5
in.

¢ Fy = 43 ksi all members

¢ 36 in. piles penetrate 355 ft of soft to stiff
clay and 28 ft of silty sand (at -197 ft)

¢ Vertical braces range in size from 16 in.
in the seventh (upper) bay to 20 in. in the
first bay
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Level 4 Analysis

¢ Static pushover analysis
¢ WAJAC generated hydrodynamic loads

¢ Rigid and flexible foundation assumptions
both analyzed
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USFOS Model

¢ Only major structural members modeled

¢ Pile/leg annulus ungrouted, thus, jacket
joints slaved transversely to pile
members. Piles, jacket and deck legs
rigidly connected at top

¢ Initial imperfection based on Chen’s
buckling curve for critical braces

¢ Non-linear soil springs developed using
API guidelines (static)

¢ Rigid joints assumed due to thickened
sections
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Orientation
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Marine Technology Development Group -
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Side Elevation
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Loading Information

¢ Assumed marine growth = 1.5 in.
¢ Cd=1.2
¢Cm=1.2
¢ wkf =(0.88
¢ Broadside loading
e H=67ft, T =14.3 sec.

* In-line current = 37 in/sec, cbf =
0.80
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Force-Displacement History
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Failure Progression
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Compression T-Z and Q-Z
Soil Spring Force History
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Fixed Base Force-

Displacement History
(Dynamic Pile Capacity Case)
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Fixed Base Failure
Progression
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Fixed Base Critical Brace
Axial Force History
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Fixed Base Critical Brace
P-M Interaction
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Research Plans for Next
Three Months

¢ Analyze and document Chevron ST 151H
and Chevron ST 151K

¢ Investigate sensitivity of Level 4 analysis
results to input parameters:

e F
y
* vertical deck forces
* soil spring assumptions (cyclic,
static and dynamic)

¢ Document benefits and pitfalls of Level 4
analyses based on research experience

¢ Write final report
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